

Published on Web 12/09/2006

The Two-State Issue in the Mixed-Valence Binuclear Cu_A Center in Cytochrome *c* Oxidase and N₂O Reductase

Serge I. Gorelsky,[†] Xiangjin Xie,[†] Ying Chen,[‡] James A. Fee,[‡] and Edward I. Solomon^{*,†}

Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, and Division of Biology, The Scripps Research Institute, La Jolla, California 92037

Received October 23, 2006; E-mail: edward.solomon@stanford.edu

The binuclear Cu_A site found both in cytochrome *c* oxidase $(CcO)^1$ and nitrous oxide reductase $(N_2OR)^2$ functions in long-range electron transfer (ET). Studies of Cu_A sites have been facilitated by the construction of inorganic models³ and the perturbation of Cu_A sites by mutation⁴ and by inserting Cu_A into proteins containing cupredoxin folds.^{5,6} The Cu_A site is defined as a Cu₂(S_{Cys})₂ cluster (Figure 1A) with a short Cu–Cu distance (EXAFS $d_{Cu-Cu} = 2.43 - 2.44$ Å);^{7,8} the Cu₂S₂ atoms are nearly planar and each copper ion is further coordinated equatorially by N_{His} and axially by either S_{Met} or carbonyl O.^{1,2,9}

In its oxidized state, CuAA is a delocalized (class III) mixedvalence species Cu^{1.5+}Cu^{1.5+}.¹⁰⁻¹³ The ground-state (GS) wave function, quantified by X-ray absorption spectroscopy (XAS), is highly covalent,¹³ with the spin density delocalized over the Cu_2S_2 cluster. This greatly contributes to the redox properties by lowering the reorganization energy and providing superexchange hole coupling for long-range ET into and out of the Cu_A center. From studies of a model complex $(d_{Cu-Cu} = 2.92 \text{ Å})^3$ relevant to the Cu_A protein site, there are two types of GS wave function, σ_{u}^{*} and π_{u} (Figure 1B), which interchange depending on the Cu-Cu distance $(\sigma_u^* \text{ for } Cu_A \text{ at a short } d_{Cu-Cu} \text{ and } \pi_u \text{ for the model complex at a }$ long d_{Cu-Cu}).¹² Density-functional theory (DFT) calculations of the Cu_A site reveal that the GS potential energy surface of the mixedvalence, oxidized cluster is flat with two minima,14 which correspond to the σ_u^* ($d_{Cu-Cu} = 2.49$ Å, Figure 1A) and π_u ($d_{Cu-Cu} =$ 3.06 Å, Figure 1B) electronic states.

As first discussed by Neese and co-workers,^{15–17} π_u is the lowest excited-state for the Cu_A site in the protein but its energy has been controversial. EPR data on Cu_A proteins show a low $g_{||}$ value of 2.19 (Table S1) which derives from spin-orbital coupling between the σ_u^* GS and the π_u excited-state which requires an energy gap of 3000–4500 cm⁻¹.^{12,15} On the other hand, from paramagnetic NMR studies, it has been observed that the lowest-energy excitedstate is thermally accessible and the energy gap between the GS and the thermally accessible state is ~350 cm⁻¹.¹⁸ This has been found in the Cu_A site from *P. verstus* and *P. denitrificans*, which have the same spectral features in UV–vis absorption and equivalent EPR *g*-values (Table S1). This study addresses this apparent discrepancy and evaluates the possible role of the two electronic states, σ_u^* and π_u , in ET of Cu_A.

UV-vis absorption of Cu_A from *Thermus thermophilus* (*Tt*) is given in Figure 2A which is similar to other Cu_A sites, and its EPR *g*-values are also equivalent to the other Cu_A sites (Table S1). The $g_{||}$ of 2.19 can be used through eq 1¹⁵ to estimate the energy (Δ) of the π_u excited-state relative to the σ_u^* GS of Cu_A. α^2 is the total Cu character in the σ_u^* GS which is 44% from Cu L-edge XAS.¹³ The Cu character in the π_u excited-state, β^2 is 31% (Table S2) from the DFT calculations below. These give a $\sigma_u^*-\pi_u$ energy gap

Figure 1. (top) DFT-optimized ground state structures of Cu_A without the protein environment: (A) σ_u^* state and (B) π_u state (only Cu₂S₂ cluster is shown for simplicity, internuclear distances are given in Å, Cu_M denotes the Cu atom with the axial Met ligand); (bottom) β -spin LUMO (contour value = 0.03 a.u.) of the [Cu₂(SCH₃)₂(imz)₂]⁺ complex (Figure S1a) in the (A) σ_u^* and (B) π_u ground states.

Figure 2. (A) Room-temperature absorption; (B) low-temperature (5 K) MCD spectra of *Tt* Cu_A; (C) TDDFT calculated absorption spectrum of the Cu_A model (total absorption, black; individual components, red).

of ~5000 cm⁻¹ (Table S1) Paramagnetic NMR behavior of Tt Cu_A is similar to the other Cu_A proteins (Table S1) indicating a presence of the thermally accessible state within the energy range estimated for the other Cu_A proteins (~450 cm⁻¹).

$$g_{\rm H} = g_{\rm e} + \frac{8\xi_{3d}^{\rm Cu}\alpha^2\beta^2}{\Delta} \tag{1}$$

The MCD spectrum (Figure 2B) can be used to resolve individual electronic transitions (Figure 2A, red lines) in the absorption spectrum of Cu_A. Time-dependent DFT (TDDFT) (Figure 2C) on Cu_A (see Supporting Information for details) reproduces the experimental absorption spectrum well and gives the parity-forbidden, lowest-energy excited-state π_u at 3200 cm⁻¹ above the σ_u^* GS. This result is consistent with the EPR-derived energy gap. However, the thermally accessible excited-state is not revealed in TDDFT calculations in the Cu_A geometry.

We can use TDDFT calculations supported by the spectroscopic data on Cu_A to map the GS and excited-state potential energy

[†] Stanford University. [‡] The Scripps Research Institute.

Figure 3. (A) The ground state and the first excited-state potential energy surfaces (black lines, Cu_A cluster in the vacuum; green, the cluster in the protein environment) and (B) Mayer bond order between the two Cu atoms in the GS of Cu_A as a function of the Cu–Cu distance.

surfaces (PES). These calculations (Figure 3A) reveal the electronic coupling between the σ_u^* and π_u states which is a function of the Cu–Cu distance. The crossing point between the two states is at $d_{Cu-Cu} = 2.66$ Å and coincides with the inflection point of the Cu–Cu bond order¹⁹ curve (Figure 3B).

These PES calculations show that both NMR and EPR results are consistent with the electronic/geometric structure of Cu_A. The anti-Curie behavior observed in paramagnetic NMR studies of Cu_A results from the thermal equilibrium between the σ_u^* and π_u^* GSs which are at very close energies in their respective equilibrium geometries (Figure 3A). Alternatively, the EPR *g*-value analysis involves the σ_u^* GS in the geometry with a short d_{Cu-Cu} where the π_u is a Frank–Condon excited-state calculated to be at 3200 cm⁻¹.

Similar energies but different wave functions of the σ_u^* and π_u GS of Cu_A suggest different chemical bonding in the two states. Going from the σ_u^* GS with the short Cu–Cu internuclear distance to π_u , the Cu–Cu bond order decreases from 0.32 to 0.12 (Figure 3B), indicating a significant decrease of the direct Cu–Cu bonding interaction. However, the sum of the Cu–S and Cu–Cu bond orders (Figure S3) has decreased only slightly in the two states, thus the loss of the Cu–Cu interaction is compensated by (1) the gain in Cu–S interactions and (2) a reduction of the electronic exchange repulsion in the π_u GS relative to the σ_u^* GS (Table S3). Thus the electronic energies of the σ_u^* GS and the π_u GS remain very close.

In the π_u GS of Cu_A, the Cu-S_{Cys} covalency becomes localized resulting in two short and two long Cu-S_{Cys} bonds (Figure 1B). The decreased Cu-Cu interaction (Figure 3B) results in a spin distribution in the Cu_A cluster that is easier to localize under the low-symmetry ligand-field of metal axial ligand (Figure S4) and electrostatic perturbations in the protein environment (Table S2). Localization of the Cu-S covalency and valence-trapping lead to larger inner- and outersphere reorganization energies (λ_i and λ_o) of the π_u GS relative to the σ_u^* GS (Table S4). The calculated λ_i of the π_u GS is 1.6 times higher than λ_i of the σ_u^* GS.

Since the σ_u^* and π_u GSs of Cu_A have very similar energies, the ET driving force changes by only ~43 mV in going from the σ_u^* GS to the π_u GS. Thus, the factors that can influence the ET rate between Cu_A and its redox partners are the donor-acceptor electronic coupling and the reorganization energies. Using Marcus

theory it is possible to evaluate relative efficiency, k_o/k_{π} , of the two states for ET. The calculated ET rate ratios in the heme $c \rightarrow Cu_A$ and $Cu_A \rightarrow$ heme *a* pathways (Figure S5) are ~15 for both of these processes which suggests that the π_u GS is much less efficient for long-range ET than the σ_u^* state.

DFT calculations of the Cu_A site without the protein environment (Figure S1a,b) result in the π_u GS being a slightly lower-energy state relative to the σ_{u}^{*} GS (Figure 3A). Expanding the QM calculations from the 51-atom Cu_A site model (Figure S1b) to 217 atoms (Figure S1c) or all protein atoms (using the QM/MM method) results in the σ_{u}^{*} GS of Cu_A as the lowest-energy state with a d_{Cu-Cu} of 2.44 Å (Figure 3A, green line) in agreement with the EXAFS data ($d_{Cu-Cu} = 2.43-2.44$ Å).⁸ This relative stability derives from the fact that the noncovalent interactions, including H-bonds between the protein backbone amides and the S_{Cys} atoms of the Cu_A site, stabilize the σ_u^* GS (which has less spin density and more negative charge on the S_{Cvs} atoms, Table S2) relative to the $\pi_{\rm u}$ GS. Thus, the protein environment plays a role in maintaining Cu_A in the σ_u^* as a lowest-energy state with the lowest reorganization energy for efficient intra- and intermolecular ET with a lowdriving force.

Acknowledgment. This research was supported by NSF Grant CHE 0446304 (E.I.S.) and NIH Grants DK31450 (E.I.S.) and GM35342 (J.A.F.). S.I.G. thanks NSERC (Ottawa) for a postdoctoral fellowship.

Supporting Information Available: Experimental details of Tt Cu_A, the description of the QM models, and the results of these calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Iwata, S.; Ostermeier, C.; Ludig, B.; Michel, H. *Nature* **1995**, *376*, 660.
 Brown, K.; Djinovic-Carugo, K.; Haltia, T.; Cabrito, I.; Saraste, M.; Moura, J. J. G.; Moura, I.; Tegoni, M.; Cambillau, C. *J. Biol. Chem.* **2000**, *275*, 41133.
- (3) Houser, R. P.; Young, V. G.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 2101.
- (4) Zumft, W. G.; Viebrocksambale, A.; Braun, C. Eur. J. Biochem. 1990, 192, 591.
- (5) Hay, M.; Richards, J. H.; Lu, Y. Proc. Nat. Acad. Sci. U.S.A. 1996, 93, 461.
- (6) Dennison, C.; Vijgenboom, E.; Devries, S.; Vanderoost, J.; Canters, G. W. FEBS Lett. 1995, 365, 92.
- (7) Blackburn, N. J.; Barr, M. E.; Woodruff, W. H.; Vanderooost, J.; Devries, S. *Biochemistry* **1994**, *33*, 10401.
- (8) Blackburn, N. J.; de Vries, S.; Barr, M. E.; Houser, R. P.; Tolman, W. B.; Sanders, D.; Fee, J. A. J. Am. Chem. Soc. 1997, 119, 6135.
 (9) Haltia, T.; Brown, K.; Tegoni, M.; Cambillau, C.; Saraste, M.; Mattila,
- (9) Hanta, I., BIOWI, K., Fegoni, M., Cambinad, C., Saraste, M., Mattha, K.; Djinovic-Carugo, K. Biochem. J. 2003, 369, 77.
 (10) Kensel, P., Ardebies, W. Discher, L. Zumfe, W. EEDS Lett. 1089, 242.
- (10) Kroneck, P.; Antholine, W.; Riester, J.; Zumft, W. *FEBS Lett.* **1988**, 242, 70.
- (11) Kroneck, P. M. H.; Antholine, W. E.; Riester, J.; Zumft, W. G. *FEBS Lett.* **1989**, *248*.
 (12) Gamelin, D. R.; Randall, D. W.; Hay, M. T.; Houser, R. P.; Mulder, T.
- (12) Gamelin, D. R.; Randall, D. W.; Hay, M. I.; Houser, K. P.; Mulder, I. C.; Canters, G. W.; de Vries, S.; Tolman, W. B.; Lu, Y.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 5246.
- (13) DeBeer George S.; Metz, M.; Szilagyi, R. K.; Wang, H. X.; Cramer, S. P.; Lu, Y.; Tolman, W. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 5757.
- (14) Olsson, M. H. M.; Ryde, U. J. Am. Chem. Soc. 2001, 123, 7866.
 (15) Neese, F.; Zumft, W.; Antholine, W.; Kroneck, P. M. H. J. Am. Chem.
- (16) Farrar, J. A.; Neese, F.; Lappalainen, P.; Kroneck, P. M. H.; Saraste, M.; Zumft, W. G.; Thomson, A. J. J. Am. Chem. Soc. **1996**, 118, 11501.
- (17) Neese, F.; Kappl, R.; Hottermann, J.; Zumft, W. G.; Kroneck, P. M. H. J. Biol. Inorg. Chem. 1998, 3, 53.
 (18) Salgado, J.; Warmerdam, G.; Bubacco, L.; Canters, G. W. Biochemistry
- (18) Salgado, J.; Warmerdam, G.; Bubacco, L.; Canters, G. W. *Biochemistry* **1998**, *37*, 7378.
- (19) Mayer, I. Chem. Phys. Lett. 1983, 97, 270.

JA067583I